Co-amenable Quantum Homogeneous Spaces of Compact Kac Quantum Groups

Fatemeh Khosravi Joint work with Mehrdad Kalantar

Seoul National University

Quantum Group Seminar 29 November 2022

Amenable groups

Definition

A locally compact group G is amenable if there exists a state m on $L^{\infty}(G)$ which is invariant under the left translation action: for all $s \in G$ and $x \in L^{\infty}(G)$, $m(s \cdot x) = m(x)$.

Theorem (Leptin 1968)

A locally compact group G is amenable if and only if A(G) admits a bounded approximate identity.

Let G be an amenable group. Then

- The C^* -algebra $C_r^*(G)$ is nuclear,
- the von Neumann algebra vN(G) is injective.

The converse is true if G is a discrete group.

Locally compact quantum groups

Von Neumann algebraic version

A von Neumann algebraic locally compact quantum group is a quadruple $(M, \Delta, \varphi, \psi)$, where

- \blacksquare M is a von Neumann algebra,
- $\Delta \colon M \to M \bar{\otimes} M$ is a normal, unital, injective *-homomorphism satisfies the coassociativity condition, i.e. $(\mathrm{id} \otimes \Delta) \circ \Delta = (\Delta \otimes \mathrm{id}) \circ \Delta$,
- φ and ψ are left and right invariant normal semifinite faithful weights on M respectively,

$$(\mathrm{id} \otimes \varphi)\Delta = \mathbb{1}\varphi$$
$$(\psi \otimes \mathrm{id})\Delta = \mathbb{1}\psi$$

 φ and ψ are called left and right Haar weights respectively.

Reduced C*-algebraic version

A reduced C*-algebraic locally compact quantum group is a quadruple $(A, \Delta, \varphi, \psi)$, where A is a C*-algebra with a coassociative map

$$\Delta: A \to M(A \otimes A)$$
, s.t $(A \otimes 1)\Delta(A) = A \otimes A = (1 \otimes A)\Delta(A)$,

and φ and ψ are left and right invariant faithful, proper, KMS-weights on A respectively.

Universal C*-algebraic version

A universal C*-algebraic locally compact quantum group is a quadruple $(A^u, \Delta^u, \varphi^u, \psi^u)$, where A^u is a C*-algebra with a coassociative map

$$\Delta^u:A^u\to \mathrm{M}(A^u\otimes A^u),\quad \mathrm{s.t}\quad (A^u\otimes \mathbb{1})\Delta^u(A^u)=A^u\otimes A^u=(\mathbb{1}\otimes A^u)\Delta(A^u)$$

and φ^u and ψ^u are left and right invariant fathful, proper, KMS-weights on A^u respectively.

All of these different aspects study the same object denoted by G.

$$A \longrightarrow C_0(\mathbb{G}), \quad A^u \longrightarrow C_0^u(\mathbb{G}), \quad M \longrightarrow L^{\infty}(\mathbb{G}).$$

■ Universal C^* -algebraic quantum group always has a co-unit, i.e. a *-homomorphism $\epsilon: C_0^u(\mathbb{G}) \to \mathbb{C}$ such that

$$(\epsilon \otimes \mathrm{id})\Delta^u = \mathrm{id} = (\mathrm{id} \otimes \epsilon)\Delta^u.$$

■ There exists a surjective *-homomorphism $\Lambda: C_0^u(\mathbb{G}) \to C_0(\mathbb{G})$ which is injective if and only if $C_0(\mathbb{G})$ has a co-unit.

Every locally compact quantum group $\mathbb{G} = (L^{\infty}(\mathbb{G}), \Delta_{\mathbb{G}}, \varphi_{\mathbb{G}}, \psi_{\mathbb{G}})$, admits a dual quantum group $\widehat{\mathbb{G}} = (L^{\infty}(\widehat{\mathbb{G}}), \Delta_{\widehat{\mathbb{G}}}, \varphi_{\widehat{\mathbb{G}}}, \psi_{\widehat{\mathbb{G}}})$ such that

$$\mathbb{G}\cong\widehat{\widehat{\mathbb{G}}}.$$

Example

Let G be a locally compact group. Let $\mathbb{G} = (L^{\infty}(G), \Delta, \varphi, \psi)$, then its dual quantum group is $\widehat{\mathbb{G}} = (\text{vN}(G), \widehat{\Delta}, \widehat{\varphi}, \widehat{\psi})$, where $\widehat{\Delta}(\lambda_g) = \lambda_g \otimes \lambda_g$ and $\widehat{\varphi} = \widehat{\psi}$ is the Plancharel weight.

■ The preadjoint of Δ induces a multiplication on $L^1(\mathbb{G}) = L^{\infty}(\mathbb{G})_*$,

$$*:L^1(\mathbb{G})\otimes L^1(\mathbb{G})\to L^1(\mathbb{G}),\quad (f\otimes g)\mapsto f*g=(f\otimes g)\circ\Delta,\quad f,g\in L^1(\mathbb{G}).$$

■ There are canonical left and right $L^1(\mathbb{G})$ -module structure on $L^\infty(\mathbb{G})$,

$$f * x = (\mathrm{id} \otimes f)\Delta(x), \quad x * f = (f \otimes \mathrm{id})\Delta(x), \quad f \in L^1(\mathbb{G}), x \in L^\infty(\mathbb{G}).$$

Definition

A locally compact quantum group \mathbb{G} is called

- amenable if $L^{\infty}(\mathbb{G})$ admits a left invariant mean, i.e. a state $m \in L^{\infty}(\mathbb{G})^*$ s.t. $m(f*x) = f(1)m(x), f \in L^1(\mathbb{G})$ and $x \in L^{\infty}(\mathbb{G})$.
- co-amenable if $L^1(\mathbb{G})$ has a bounded approximate identity.

Question: Is amenability of \mathbb{G} equivalent to the coamenability of $\widehat{\mathbb{G}}$?

Co-amenability and Amenability

Theorem (Bedos-Tuset)

Let \mathbb{G} be a locally compact quantum group. The following are equivalent:

- **1** The Banach algebra $L^1(\mathbb{G})$ has a bounded approximate identity,
- **2** There is a state $\epsilon \in C_0(\mathbb{G})^*$ such that $(\epsilon \otimes id)\Delta = id$,
- **3** $C_0^u(\mathbb{G}) = C_0(\mathbb{G})$, that is the map $\Lambda : C_0^u(\mathbb{G}) \to C_0(\mathbb{G})$ is injective.

Theorem (Bedos-Tuset)

If a locally compact quantum group $\mathbb G$ is coamenable, then its dual quantum group $\widehat{\mathbb G}$ is amenable.

Theorem (Bedos-Tuset)

Suppose that \mathbb{G} is an amenable quantum group. Then $C_0^u(\widehat{\mathbb{G}})$ and $C_0(\widehat{\mathbb{G}})$ are nuclear C^* -algebras and $L^{\infty}(\widehat{\mathbb{G}})$ is an injective von Neumann algebra.

G-injectivity

■ If $\widehat{\mathbb{G}}$ is an amenable locally compact group, then $L^{\infty}(\mathbb{G})$ is injective.

Definition

Let \mathbb{G} be a locally compact quantum group, and let M be a \mathbb{G} -von Neumann algebra, i.e. there exists an action $\alpha:\mathbb{G} \curvearrowright M$. We say M is \mathbb{G} -injective von Neumann algebra if for any \mathbb{G} -von Neumann algebras N_1, N_2 , every completely isometric \mathbb{G} -equivariant $\Psi: N_1 \to N_2$, and every ucp \mathbb{G} -equivariant map $\Phi: N_1 \to M$, there exists a ucp \mathbb{G} -equivariant map $\tilde{\Phi}: N_2 \to M$ such that $\tilde{\Phi} \circ \Psi = \Phi$.

Theorem (Crann-2017)

A locally compact quantum group $\widehat{\mathbb{G}}$ is amenable if and only if $L^{\infty}(\mathbb{G})$ is \mathbb{G} -injective.

A locally compact quantum group \mathbb{G} is

- discrete if $L^1(\mathbb{G}) = L^{\infty}(\mathbb{G})_*$ is unital, denoted by $l^1(\mathbb{G}) = l^{\infty}(\mathbb{G})_*$.
- compact if $C_0(\mathbb{G})$ is unital, denoted by $C(\mathbb{G})$ and Haar weights are finite.
- compact Kac if $\varphi^{\mathbb{G}}$ is a tracial state.
- discrete Kac if $\varphi^{\mathbb{G}} = \psi^{\mathbb{G}}$.

Theorem (Ruan-1996)

Let \mathbb{G} be a discrete Kac quantum group and let $\widehat{\mathbb{G}}$ be its compact Kac dual quantum group. Then the following are equivalent:

- \blacksquare \square is amenable,
- $L^{\infty}(\widehat{\mathbb{G}})$ is injective,
- $C_0(\widehat{\mathbb{G}})$ and $C_0^u(\widehat{\mathbb{G}})$ are nuclear C^* -algebras,
- $\widehat{\mathbb{G}}$ is coamenable.

Blanchard-Vaes (2002), Tomatsu (2006), and Crann (2017) have shown that for a discrete quantum group \mathbb{G} ,

 \mathbb{G} is amenable if and only if $\widehat{\mathbb{G}}$ is coamenable

Relative amenability

Definition

Let G be a locally compact group. The closed subgroup H < G is called relatively amenable if there is a left H-invariant mean on $C_b^{ru}(G)$.

Let G be a locally compact group. The closed subgroup H < G is

- amenable iff there is a G-equivariant conditional expectation $E: L^{\infty}(G) \to L^{\infty}(G/H)$.
- relatively amenable iff there is a G-equivariant positive norm one linear map $E: L^{\infty}(G) \to L^{\infty}(G/H)$.

Caprace-Monod showed that for a large class of locally compact groups (containing all discrete groups and all groups amenable at infinity) every relatively amenable subgroup is amenable.

Question: Is there any relative amenable subgroup that is not amenable?

Closed quantum subgroups

Definition

We say \mathbb{H} is a closed quantum subgroup of \mathbb{G} if

■ (Woronowicz) there is a surjective *-homomorphism

$$\pi: C_0^u(\mathbb{G}) \to C_0^u(\mathbb{H})$$
 s.t $(\pi \otimes \pi) \circ \Delta_{\mathbb{G}}^u = \Delta_{\mathbb{H}}^u \circ \pi$.

■ (Vaes) there exists an injective normal unital *-homomorphism

$$\gamma: L^{\infty}(\widehat{\mathbb{H}}) \to L^{\infty}(\widehat{\mathbb{G}}) \quad \text{s.t.} \quad (\gamma \otimes \gamma) \circ \Delta_{\widehat{\mathbb{H}}} = \Delta_{\widehat{\mathbb{G}}} \circ \gamma.$$

Let $\mathbb H$ be a closed quantum subgroup of $\mathbb G$. Then $\mathbb H$ acts on $L^\infty(\mathbb G)$ on the right

$$\alpha: L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}) \,\bar{\otimes}\, L^{\infty}(\mathbb{H}).$$

The fixed point algebra of α is denoted by

$$L^{\infty}(\mathbb{G}/\mathbb{H}) = \left\{ x \in L^{\infty}(\mathbb{G}) \, \middle| \, \alpha(x) = x \otimes \mathbb{1} \right\}$$

Coideal

Let $\mathbb G$ be a locally compact quantum group. A von Neumann subalgebra $M\subseteq L^\infty(\mathbb G)$ is called:

- (left) coideal if $\Delta(M) \subseteq L^{\infty}(\mathbb{G}) \overline{\otimes} M$,
- invariant if $\Delta(M) \subseteq M \overline{\otimes} M$.

There is a one-one correspondance between (left) coideals of \mathbb{G} and (left) coideals of $\widehat{\mathbb{G}}$.

$$M$$
 coideal in $L^{\infty}(\mathbb{G}) \iff \tilde{M} = M' \cap L^{\infty}(\widehat{\mathbb{G}})$ coideal in $L^{\infty}(\widehat{\mathbb{G}})$.

Example

Let \mathbb{H} be a closed quantum group of \mathbb{G} . Then $M = L^{\infty}(\mathbb{G}/\mathbb{H})$ is a coideal in \mathbb{G} . Moreover its codual $\tilde{M} = L^{\infty}(\widehat{\mathbb{H}})$.

Relative amenability

Definition (Kalantar-Kasprzak-Skalski-Vergnioux 2022)

Let \mathbb{G} be a discrete quantum group, and let \mathbb{H} be a quantum subgroup of \mathbb{G} . We say \mathbb{H} is relatively amenable in \mathbb{G} if there is a \mathbb{H} -invariant mean on $\ell^{\infty}(\mathbb{G})$.

Let \mathbb{G} be a discrete quantum group. A coideal $M \subseteq \ell^{\infty}(\mathbb{G})$ is said to be

- amenable coideal in $\ell^{\infty}(\mathbb{G})$ if there is a \mathbb{G} -equivariant conditional expectation $E: \ell^{\infty}(\mathbb{G}) \to M$.
- relative amenable coideal in $\ell^{\infty}(\mathbb{G})$ if there is a ucp \mathbb{G} -equivariant map $E: \ell^{\infty}(\mathbb{G}) \to M$.

Relative amenability and Amenability

Theorem (Kalantar-Kasprzak-Skalski-Vergnioux 2022)

Let \mathbb{G} be a discrete quantum group and \mathbb{H} be a quantum subgroup of \mathbb{G} . The following are equivalent:

- \blacksquare \mathbb{H} is relatively amenable in \mathbb{G} ,
- $\ell^{\infty}(\mathbb{G}/\mathbb{H})$ is relatively amenable coideal in $\ell^{\infty}(\mathbb{G})$,
- H is amenable,
- \bullet $\ell^{\infty}(\mathbb{G}/\mathbb{H})$ is amenable coideal in $\ell^{\infty}(\mathbb{G})$.

Note that the trivial coideal \mathbb{C} is (relative) amenable if and only if the discrete quantum group \mathbb{G} is amenable.

Question: Let M be a coideal of $\ell^{\infty}(\mathbb{G})$. Under which condition relative amenability of a coideal M implies amenability of M in $\ell^{\infty}(\mathbb{G})$?

Coamenability of quantum homogeneous spaces

Let \mathbb{G} be a compact quantum group and let \mathbb{H} be a closed quantum subgroup of \mathbb{G} realized by $\pi \in \operatorname{Mor}(C^u(\mathbb{G}), C^u(\mathbb{H}))$. Denote

$$C^{u}(\mathbb{G}/\mathbb{H}) = \{x \in C^{u}(\mathbb{G}) \mid (id \otimes \pi) \Delta^{u}(x) = x \otimes 1\}, \quad C(\mathbb{G}/\mathbb{H}) = \Lambda_{\mathbb{G}}(C^{u}(\mathbb{G}/\mathbb{H})).$$

Definition (Kalantar-Kasprzak-Skalski-Vergnioux 2022)

We say that \mathbb{G}/\mathbb{H} is a coamenable quantum quotient of \mathbb{G} if the restriction $\varepsilon: C^u(\mathbb{G}/\mathbb{H}) \to \mathbb{C}$ admits a reduced version, i.e. there exists $\varepsilon^r: C(\mathbb{G}/\mathbb{H}) \to \mathbb{C}$ satisfying $\varepsilon^r \circ \Lambda_{\mathbb{G}}(C^u(\mathbb{G}/\mathbb{H})) = \varepsilon|_{C^u(\mathbb{G}/\mathbb{H})}$.

Theorem (Kalantar-Kasprzak-Skalski-Vergnioux 2022)

The quantum quotient \mathbb{G}/\mathbb{H} is co-amenable if and only if $\pi \in \operatorname{Mor}(C^u(\mathbb{G}), C^u(\mathbb{H}))$ admits a reduced version, that is there exists $\pi^r \in \operatorname{Mor}(C(\mathbb{G}), C(\mathbb{H}))$ such that $\pi^r \circ \Lambda_{\mathbb{G}} = \Lambda_{\mathbb{H}} \circ \pi$.

Reminder. A LCQG \mathbb{G} is coamenable if $\varepsilon \in C_0^u(\mathbb{G})^*$ admits a reduced version $\varepsilon^r \in C_0(\mathbb{G})^*$.

Coamenability of quantum homogeneous spaces

Theorem (Kalantar-Kasprzak-Skalski-Vergnioux 2022)

Let \mathbb{G} be a compact quantum group and let $\mathbb{H} \leq \mathbb{G}$ be a normal quantum subgroup. Then the normal Baaj-Vaes subalgebra $\ell^{\infty}(\widehat{\mathbb{H}}) \subseteq \ell^{\infty}(\widehat{\mathbb{G}})$ is relatively amenable iff \mathbb{G}/\mathbb{H} is a co-amenable quotient.

Proof.

- The quotient \mathbb{G}/\mathbb{H} viewed as a compact quantum group denoted by \mathbb{L} ,
- $\ell^{\infty}(\widehat{\mathbb{H}}) = \ell^{\infty}(\widehat{\mathbb{G}}/\widehat{\mathbb{L}})$ is relative amenable iff $\widehat{\mathbb{L}}$ is amenable,
- $\widehat{\mathbb{L}}$ is amenable iff $\mathbb{G}/\mathbb{H} = \mathbb{L}$ is coamenable.

Question. What is the relation between (relative) amenability of $\ell^{\infty}(\widehat{\mathbb{H}})$ in $\ell^{\infty}(\widehat{\mathbb{G}})$ and the co-amenability of the quotient \mathbb{G}/\mathbb{H} in general for non-normal quantum subgroups $\mathbb{H} \leq \mathbb{G}$?

Let $\alpha: M \to L^{\infty}(\mathbb{G}) \overline{\otimes} M$ be an action of \mathbb{G} on M. For every normal semifinite faithful weight θ on M, there exists a unitary $U_{\theta} \in L^{\infty}(\mathbb{G}) \overline{\otimes} B(H_{\theta})$ such that

$$\alpha(x) = U_{\theta}^*(1 \otimes x)U_{\theta}.$$

Then U_{θ} implements an action of \mathbb{G}^{op} on $M' \subseteq B(H_{\theta})$,

$$\alpha^{op}: M' \to L^{\infty}(\mathbb{G}^{op})\overline{\otimes}M', \quad \alpha^{op}(x) = U_{\theta}(1 \otimes x)U_{\theta}^*.$$

Proposition (Moakhar 2018)

Let \mathbb{G} be a compact quantum group of Kac type, and let $\mathbb{H} \leq \mathbb{G}$. Then the following are equivalent:

- There is a $\widehat{\mathbb{G}}$ -equivariant conditional expectation $E: \ell^{\infty}(\widehat{\mathbb{G}}) \to \ell^{\infty}(\widehat{\mathbb{H}})$,
- $\widehat{\mathbb{G}} \ltimes \ell^{\infty}(\widehat{\mathbb{H}})$ is \mathbb{G}^{op} -injective,
- $\widehat{\mathbb{G}} \ltimes \ell^{\infty}(\widehat{\mathbb{H}})$ is injective,
- 4 $L^{\infty}(\mathbb{G}/\mathbb{H})'$ is \mathbb{G}^{op} -injective,
- **5** $L^{\infty}(\mathbb{G}/\mathbb{H})'$ is injective.
- **6** $L^{\infty}(\mathbb{G}/\mathbb{H})$ is injective.

G-injectivity

- It is known that a von Neumann algebra $M \subseteq B(H)$ is injective iff M' is injective.
- Let \mathbb{G} be a compact quantum group of Kac type, and let $\mathbb{H} \leq \mathbb{G}$. Does \mathbb{G}^{op} -injectivity of $L^{\infty}(\mathbb{G}/\mathbb{H})'$ imply \mathbb{G} -injectivity of $L^{\infty}(\mathbb{G}/\mathbb{H})$?

Definition

Let M be a \mathbb{G} -von Neumann algebra, i.e. there is an action $\alpha: \mathbb{G} \curvearrowright M$. We call M relatively \mathbb{G} -injective if there exists a ucp \mathbb{G} -equivariant map

$$\Psi: L^{\infty}(\mathbb{G})\overline{\otimes}M \to M, \quad \Psi \circ \alpha = \mathrm{id}_M.$$

Theorem (Crann-2017)

If M is an injective \mathbb{G} -von Neumann algebra that is relatively \mathbb{G} -injective, then M is \mathbb{G} -injective.

Theorem (Kalantar-K)

Let \mathbb{G} be a compact Kac quantum group, and let $\mathbb{H} \leq \mathbb{G}$. If $L^{\infty}(\mathbb{G}/\mathbb{H})'$ is relatively \mathbb{G}^{op} -injective. Then $L^{\infty}(\mathbb{G}/\mathbb{H})$ is relatively \mathbb{G} -injective.

Proposition (Kalantar-K)

If M is a \mathbb{G} -injective von Neumann algebra. Then

$$CB_{L^{1}(\mathbb{G})}(L^{\infty}(\mathbb{G}), M) = span \ CP_{L^{1}(\mathbb{G})}(L^{\infty}(\mathbb{G}), M).$$

Proposition (Kalantar-K)

Let \mathbb{H} be a closed quantum subgroup of \mathbb{G} . Let $L^{\infty}(\mathbb{G}/\mathbb{H})$ be a \mathbb{G} -injective von Neumann algebra. Then for every completely bounded \mathbb{G} -equivariant map $\Phi: C(\mathbb{G}) \to L^{\infty}(\mathbb{G}/\mathbb{H})$, there exists a functional $\mu_{\Phi} \in C^{u}(\mathbb{G})^{*}$ such that $\Phi = (\mu_{\Phi} \otimes \mathrm{id}) \Delta_{r}^{u,r}$.

Amenability implies coamenability

Theorem (Kalantar-K)

Let $\widehat{\mathbb{G}}$ be an exact discrete Kac quantum group. If there exists a $\widehat{\mathbb{G}}$ -equivariant conditional expectation $E: l^{\infty}(\widehat{\mathbb{G}}) \to l^{\infty}(\widehat{\mathbb{H}})$. Then \mathbb{G}/\mathbb{H} is coamenable.

Proof. Let $\alpha : \mathbb{G} \curvearrowright L^{\infty}(\mathbb{G}/\mathbb{H})$,

- Since $L^{\infty}(\mathbb{G}/\mathbb{H})$ is relatively \mathbb{G} -injective we have the ucp \mathbb{G} -equivariant left inverse of α , $\Phi: L^{\infty}(\mathbb{G})\overline{\otimes}L^{\infty}(\mathbb{G}/\mathbb{H}) \to L^{\infty}(\mathbb{G}/\mathbb{H})$
- $L^{\infty}(\mathbb{G}/\mathbb{H})$ is injective, so $\iota : C(\mathbb{G}/\mathbb{H}) \to L^{\infty}(\mathbb{G}/\mathbb{H})$ is a nuclear map, there exists a net of finite rank ucp maps (Ψ_i) such that $\Psi_i \to \iota$,
- Let $\Phi_i := \Phi \circ (\mathrm{id} \otimes \Psi_i) \circ \alpha|_{C(\mathbb{G}/\mathbb{H})}$,
- There exists a net $(\mu_i) \subseteq C(\mathbb{G}/\mathbb{H})^*$ such that $\Phi_i = (\mathrm{id} \otimes \mu_i) \circ \alpha$,
- the weak*-cluster point of (μ_i) is the reduced counit on $C(\mathbb{G}/\mathbb{H})^*$.

Thanks for your attention!